■ Description
- 종합 기능형 교통 관제 시스템
- YOLO를 활용하여 Object Detection을 진행하며, 이를 바탕으로 실시간 도로 상황을 인식하고 판단하는 서비스 개발
- 판단 데이터는 종합 기능형 교통 관제 시스템으로 제공
■ Used Software
- YOLOv5
- OpenCV
- Pytorch
- ngrok
- FastAPI
- Docker
- MySQL
■ Language
- Python
- HTML/CSS
■ My Work
- YOLO 모델 학습
- YOLO 객체 인식
- OpenCV 카메라 연결
- 도로영역 탐지
- API 연결
■ Service Framework

■ YOLO Object Detection
- Event Type
EVENT/ : YOLO Object Detection을 통해 인지되는 Object를 기반으로 Event_type을 지정 │ ├── Human/ │ ├── P01 : person detected │ └── ... │ ├── Bicycle or Motorcycle/ │ ├── B01 : bicycle detected with person │ ├── B02 : motorcycle detected with person │ └── ... │ ├── Fire/ │ ├── F01 : fire detected │ ├── F02 : smoke detected │ ├── F03 : car fire detected │ └── ... │ ├── Animal/ │ ├── A01 : cat or dog detected │ ├── A02 : deer or elk detected │ ├── A03 : racoon detected │ └── A04 : wild boar or pig detected │ ├── Obstacle/ │ ├── S01 : Tree detected on the road │ ├── S02 : Rock detected on the road │ ├── S03 : Box detected on the road │ ├── S04 : Tire detected on the road │ ├── S05 : Drum detected on the road │ └── ... │ └── Vehicle/ └── ...
- Used Dataset
YOLOv5m: https://github.com/ultralytics/yolov5
GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite. Contribute to ultralytics/yolov5 development by creating an account on GitHub.
github.com
🔥 Fire Detection: https://universe.roboflow.com/porvip/fire-szxx8
fire Object Detection Dataset by PORVIP
192 open source fire images. fire dataset by PORVIP
universe.roboflow.com
🐶 Animal Detection
- Cat: https://universe.roboflow.com/yolo-4akh3/cat-model-oyjob
cat model Object Detection Dataset and Pre-Trained Model by yolo
32 open source cat images plus a pre-trained cat model model and API. Created by yolo
universe.roboflow.com
- Deer: https://universe.roboflow.com/jwellstx-ahvez/deerface
DeerFace Object Detection Dataset and Pre-Trained Model by jwellstx
1000 open source Deer images plus a pre-trained DeerFace model and API. Created by jwellstx
universe.roboflow.com
- Racoon: https://universe.roboflow.com/objectdection2/racoonsfinder
RacoonsFinder Object Detection Dataset and Pre-Trained Model by ObjectDection2
975 open source racoons images plus a pre-trained RacoonsFinder model and API. Created by ObjectDection2
universe.roboflow.com
- Dog: https://universe.roboflow.com/tansam-uunrl/dog-detector1
Dog Detector1 Object Detection Dataset and Pre-Trained Model by Tansam
202 open source dogs images plus a pre-trained Dog Detector1 model and API. Created by Tansam
universe.roboflow.com
- Wild boar: https://universe.roboflow.com/workspace1-lhfkr/wildboar-afbbo
WILDBOAR Object Detection Dataset by workspace1
500 open source WILDBOAR images. WILDBOAR dataset by workspace1
universe.roboflow.com
📦 Obstacle Detection
- Tree: https://universe.roboflow.com/tree-detection-h9dcy/tree-detection-ekaot
Tree Detection Object Detection Dataset and Pre-Trained Model by Tree Detection
3820 open source tree images plus a pre-trained Tree Detection model and API. Created by Tree Detection
universe.roboflow.com
- Rock: https://universe.roboflow.com/aditya-xxyrw/rocks-mrlaw
rocks Object Detection Dataset and Pre-Trained Model by Aditya
910 open source Rocks images plus a pre-trained rocks model and API. Created by Aditya
universe.roboflow.com
- Box: https://universe.roboflow.com/objectdetection-rclje/parceldetection-cdilp
ParcelDetection Object Detection Dataset and Pre-Trained Model by ObjectDetection
3064 open source parcels images plus a pre-trained ParcelDetection model and API. Created by ObjectDetection
universe.roboflow.com
- Tire: https://universe.roboflow.com/robert-almalak/tires-9zgkh
Tires Object Detection Dataset and Pre-Trained Model by Robert AlMalak
500 open source Tires images plus a pre-trained Tires model and API. Created by Robert AlMalak
universe.roboflow.com
YOLO Framework

Road Boundary Check
1. 영상 촬영 시작 후 일정 시간 동안 차량 객체가 인식되는 좌표 정보 저장
2. 저장된 좌표 데이터를 Convexhull Algorithm을 활용하여 꼭지점 좌표만 저장
3. Polygon 타입 데이터를 활용하여 도로 영역 선언
4. 영역 탐지 이후 도로 영역에 진입하는 객체에 상황 판단 로직 작동
Object Detection
- YOLOv5m (Pretrained model)
→ Total Class: 80
→ Used Classes: Person, Bicycle, Motorcycle, Car, Bus Truck


🐶 Animal Detection Model (Custom model)
→ Total Class: 5
→ Used Class: Cat, Dog, Deer/Elk, Racoon, Wild boar/Pig

🔥 Fire Detection Model (Custom Model)
→ Total Class: 3
→ Used Class: Fire, Smoke, Car fire

📦 Obstacle Detection Model (Custom model)
→ Total Class: 5
→ Used Class: Tree, Box, Tire, Drum can, Rock

■ GitHub
GitHub - SCUTUM98/KFQ_TEAM01
Contribute to SCUTUM98/KFQ_TEAM01 development by creating an account on GitHub.
github.com
댓글